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INFLUENCE OF DISSIPATION ON THE PROPAGATION OF 
A SPHERICAL EXPLOSION SHOCK WAVE* 

V.N. LIKHACHEV 

The problem of the propagation of an explosion shock wave in a weakly 
compressible viscous medium at low Reynolds numbers is solved by the 
method of asymptotic expansions. The influence of non-linear terms in 
the principal approximation is studied, and the law of wave amplitude 
damping and its profile are found. 

1. Formulation of the problem. The system of equations that describes the spherically 
symmetric motion of a compressible viscous fluid is /l/ 

(1-l) 

where the bar refers to dimensional quantities, 9,T are the entropy per unit mass and the 
temperature, c,p, Z are the coefficients of shift, spatial viscosity, and thermal conductivity. 
Knowing the internal energy as a function of p and T we can find the dependences p@,5) and 

T cp, S). These relations close system (1.1). 
The action of the explosion products on a fluid is modelled by a piston, moving according 

to the law Z = q(t), where ?j (O)= z,, Q' (0) = 0, (Do is the shock initial velocity). 
We will introduce the dimensionless variables 

where PO and T, are the density and temperature of the undisturbed medium. 
The medium is assumed to be weakly compressible. We will introduce the small parameter 

E = (&J/ap).-l in the undisturbed medium, and solve the problem in the range of parameters 
ensuring small density disturbances: p = 1 $ ep. For inviscid flow, p is the same in the 
principal approximation as the dimensionless pressure /2/. 

We shall seek the principal term of the expansion of the solution with respect to the 
small parameter e. Neglecting terms in (1.1) that are obviously taken into account in later 
approximations, we obtain the system 
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The initial conditions are homogeneous, and the boundary condition is: x=m(t), l&= 

cp' (C 
Since we shall be considering small density disturbances, let us say something about the 

acoustic approach to this problem, developed in /3/, where the impulse evolution is studied 
in the light of non-linearity, non-equilibrium, and dissipation, including the joint action 
of viscosity and heat conduction. The initial profile of the shock wave (SW) is obtained 
experimentally as a known exponential function /4/. In addition, the assumption is made that 
one of the Riemann invariants vanishes: j5-@,,o” =O(Z, is the velocity of sound in the un- 
disturbed medium). The basis for this approach is the small influence of viscosity on lengths 
of the order of the wave width, i.e., the inviscid flow is refined for large Reynolds numbers; 
this is important at large distances. 

When obtaining the fundamental equation used in non-linear acoustics, the following is 
assumed /5/: 1) the disturbances are small for all parameters, in particular, the entropy, 
which varies as a result of heat conduction (the non-linear terms in the last of Eqs.Cl.2) 
are thrown out; 2) a special form of the equation of state is used; 3) we take p = p&i. 
With these assumptions, system (1.2) can be reduced to a single equation. 

It was shown in /2/ that, for an inviscid medium, the third condition does not hold in 
certain zones, notably in the zone of short times, when the SW profile is being built up. 
It is also shown in /2/ that, when there is no viscasity and heat conduction, analytic solution 
of the above problem gives precisely an exponential profile, while the third condition holds 
in the SW zone. Non-linear effects are studied in /6, 7/. The third condition holds for 
inviscid flow everywhere, only in the case of plane symmetry both for the shockless motion 
of the piston /8/ and in the presence of SW /2/. 

Thus the acoustic approach is justified for a narrow zone around the SW, where the 
gradient of the disturbances is much greater than in the remaining zone, and does not provide 
a solution of the problem of the formation of an SW profile, or in the zone around the piston. 
In the present paper none of the three assumptions is made, nor are they valid in certain 
domains. 

Our last remark concerns the range in which the theory is applicable. We know that, 
when the detonation wave leaves the contact surface, the pressure in the fluid depends, not 
on the absolute size of the charge, but only on the rate of detonation, i.e., on the power 
of the explosive material (EM) /9/. Hence the range in which asymptotic and acoustic theory 
are applicable is determined by the power of the EM, and not by the absolute size of the 
charge. An analytic solution /2, lO/ shows that the profiles of spherical SW for an inviscid 
and thermally non-conducting medium are similar with different absolute sizes of the same EM. 
A condensed EM of the trotyl type give, on the interface with water, pressures of the order 
of tens of thousands of atmospheres, at which the assumption of weak compressibility are 
invalid. 

Below, we consider the case when the viscosity is significant in the principal approx- 
imation. This happens when 

aI0 = are-'/z, aso = a&J*, a0 = ae-‘Ia, ai, a- l 

2. Solution in the short-time zone. This zone is determined by the scales of the 
variables: z- 1, t = ,&i* N cg/’ p = p”E+. N e-‘/t, u - 1 s N 1, T - 1. 

In the principal approximation we obtain the systdm of equations 

as 
ar=- i al %++'+a I ( ) 9[(%)” +$I) 
T (p, s) = T (1 + e’/gp”, 8) = T (1, J) = T (8) 

The initial conditions are zero, and the boundary condition is cp (FE'/*) = 1,U (ve'/*)= 1, 
i.e., U (1.T) = 1. 

The first two equations will be solved independently of the third, and then the entropy 
is found. 

We make the Laplace transformation 

V (I, a) = S u (T, z) e-za dz, P (I, a) = r po (T, 3) e-ra dT 
0 0 

We find V from (2.1) in the light of the initial conditions, the solution damping 
condition as 5-++00,Reala>O, and the boundary condition; then we obtain P from the 
second equation of the system. 

Putting 0 = aa and making a Laplace inversion, we obtain 
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u=‘s (1+ q)fl(e,5,T,a)de anrz 
r 

c-l” p = p%‘l* = 2niz s fl(% z, T, 4 de , fl = 

r I/m 
1 

- exp 
e+av-1+e [G(-+$)I 

(2.2) 

where r is a vertical contour in the complex plane of 8 = 13,1+ &I~*, located to the riqht 

of all singular points of the integrand. We indicate the branch of the root in (2.2) : the 
solution is damped as I+ + 00 if the branch of the root is defined by the cut along the 

semi-axis eoB = 0 - co <0,,l< -1, and the condition arg (1 + CJ1 + i u) = n/2. 
The for-mall; constructed solution (2.2) satisfies the equations, and the boundary and 

initial conditions. 
It can be shown that, if the expressions for p” and u can be differentiated under the 

integral sign the required number of times, they will satisfy system (2.1). The uniform 

convergence of all the integrals encountered when checking the conditions with t>O,x>,i+ 

A (A > 0). which ensures in particlar differentiation under the integral sign, follows from 

the bound 

where AI is independent of .Z and t. 

We will check that the boundary condition holds for the velocity. By the uniform 

convergence of the integral, 

We will check that the initial conditions hold. By the uniform convergence, we can pass 

tothelimit under the integral sign as 7-0: 

(the contour T,: (tl = M,@, -n&<@<rc/Z} is shown in Piq.1). 

Fig.1 

For the integral along TX we obtain the bound 

since cosJ1/2 > UJZ. For x>i, M-r+m, we obtain U (2, 0) = 0 

(at 2= 1,. t= 0 a discontinuity). The initial condition is 

checked in the same way for the pressure. 

Note that, in this statement, in the zone of short times, 

for the case of cylindrical symmetry and an inviscid medium, 
Laplace inversion leads to divergent integrals (even in the 

sense of the principal value). 

2. Construction of the solution for t-1. The scales of the variables in the 

zone round the piston are: x - l,u- 1. In the principal approximation, the equation of 

continuity gives an incompressible fluid, for whose velocity we obtain U = c (Q/x", c (t) = 
q'(t)@(t). Depending on the properties of the medium, i.e., on the functions u (p, s),T (p, a), the 

principal terms in the equations of motion and energy can be varied. Let the conditions 

adas - 1, atlas - 1 hold. Measuring the entropy from the entropy of the undisturbed state, we 

write the energy equation as 

G (s) = < T (s) ds 
0 

It is clear from thie that .G = Gie-‘/~,Gi- 1. !Je obtain in the principal approximation 
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(3-f) 

In the equation of motion, the viscous term vanishes. Noting that 
a0 as acr a@ 

883F=aGal 

we obtain p = pie-'/* - E-'/Y. As a result, we have 

(3.2) 

The pressure rises as a result of the entropy variation. Integrating Wq.f3.2), we obtain 

p = p+vr =i - s $$&G=--o(i,G)+g(t) (3.3) 

The function g(t) will be found by union with the expansion describing the solution in 
the next zone. 

When x = 0, the solution of Eq.(3.1) can easily be found by the method of characteristics 
in the parametric form 

z I [cp” (t) + n]“, I$ = ha ’ s cp(tl) dzl 
o [CpS (:I) + tap ’ O G n< w 

Let us construct the solution in the so-called wave zone, defined by the scales of the 
variables: t-i, 5 = z&/a _ &Is, p = p,s-‘f* - off*, u = gee - II, .Q = s&f* - $fx, T - 1. In the principal 
approximation, system (1.2) takes the form 

au ah 2=-r, 
at c 

_!!L+&+o 
e (3.5) 

The system splits up, and the entropy increases weakly due to viscosity. The general 
solution of system (3.5) is 

Fl’ (- 4 f 0 
PC = ** 

Pa’ (I. i-t) 

+ 2.2 
(3.6) 

u, I 
F1(--t+tf 

-!- 
Faf~*f I) 

2,’ + 

Ji’ (-- ze + tf F!L (2. f t) 
- 

5% ra T 

In the zone about the line x - 1 = te+, thissolution cannot be combined with the solution 
for short times, so that another expansion has to be sought there. The arbitrary functions 
in (3.6) can be found only from the union, so that the boundary conditions for system (3.5) 
have to be replaced. 

Let us construct the solution in the zone given by the scales: g = &(z- t&- 1)~ 1, 
t - 1, p = Sp,, - 6, u = e%u, - &&, XS'l*!t z 1, Xe = ~8% *v 1 ford 6 < ord I). The system in the 
principal approximation in the new coordinates is (the second-order terms have to be retained 
in order to find the principal approximation correctly) 

(3.7) 

It is clear from the last equation of (3.7) that s - s'J+, i.e., the entropy term in 
the first equation of (3.7) has to be discarded in the principal approximation, while in the 
shock wave zone, the entropy increases only as a result of the viscosity. 

The principal parts of the first and second equations of (3.7) are the same. Subtracting 
the first equation from the second, we obtain in the principal approximation 

The zone considered departs to infinity, where p,, = u, ~0. Hence it follows from the 
first equation of (3.8) that the corresponding Riemann acoustic invariant vanishes: u, -ppo = 0. 

In the light of this, the second equation leads to the usual equation of heat conduction 
for the function z+,t. Its only solution which confines with the solution for short times 
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is the fundamental solution 

(3.9) 

The constants 6,i\i will be found from the union. 

4. Intermediate asymptotic forms and union. The intermediate zone between 
t N $11 and t- 1 can be found using stretched time t, = tz?~~~ 1, i.e., is characterized by 
times t - E'i*. 

Let us find the intermediate asymptotic form for the pressure in the initial zone. In 
the intermediate zone 

The asymptotic behaviour of (4.1) can be found by the saddle-point method for fixed 1. The 
saddle points are found from the condition afMl= 0, which gives a cubic equation, and we 
find by Cardano's formula 

81=-l+ -&Do,+&., e*,s=-l++-- Zfl$_& + 
2 - 

i-1/3 
13, = (-q/2 - Q)"s, D, = (-q/Z + Q)‘* 

q=-&(X4+ 36h2+216), Q=$1/9+- P/3 

The first singular point of the integrand is OS = -1, while the second is given by the 

condition -0/a = r/l +% Squaring both sides, we obtain a quadratic equation for 8. Noting 
the above choice of the branch of the root 1/g +0, we discard one root. As a result we find 
thesecondsingular point OS = (a2 - ai/a2+4)/2(0. 

The mutual disposition of the saddle and singular points is shown in Fig.1. We have 

@I, es, e* are real, and 8,, Bs are complex conjugates; it can be shown that --q/2 - Q>O,R, > 
0, D, > O,D, \<D,, Real& > Rea16a,s; the point 8, is to the left of all the other points. 

When finding the asymptotic forms in the problem, we can confine ourselves to passage 
through just the point B1, without passing through 6% and @,;the deformed contour r0 is shown 
in Fig.1. The saddle direction at the point & is given by 

Obviously, k(h)>O, so that the saddle direction at+, is vertical. 
Depending on h one of the conditions: el> 8,, 0,(&, & = Os, can hold. In the first 

case only the saddle point makes a contribution to the asymptotic form: 

In the second case, on deformation, the contour covers the singular point 6, and we 
have to add to the right-hand side of (4.2) the residue at this point, equal to 

ix-*‘* exp [e-%PtJ (e,)) res(e~f=---g-- - ze--a*--af-aixp 
J~+%g%f ’ 8x03 = 2?3-=vri) 

In the third case the saddle point merges completely with the pole of the integrand. This 
corresponds to a certain ho. To find the asymptotic form in this case, we have to deform 
the contour rn, replacing it by the contour I's+rb+rz (see Fig.l), where I?%: {e = eb + if&,‘, 
b G 9,~ c -1, r,: {e = eb + ie:, - 00 < e2 Q -44, rb: (0 = Bs -I- be”*, - n/2 < $ < n/2}, b < ~"1. 

BY using the localization principle for integrals of the type considered /11/ and letting 
b -+ 0, it can be shown that the asymptotic form of the integral (4.1) is 

e-V. 

lJ*= zs1/1+e,g(e,) 
exp [~-“w.-~t,f(0~J] (4.3) 

We find the asymptotic forminthe neighbourhood of h,. We use the results of /ll/ for 
the case when the saddle point is close to the pole. We obtain 
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(4.4) 

Let us show that (4.4) gives an asymptotic form for the pressure which is everywhere 
suitable if e,>l3,, if we replace 91 (A,) = 95 bv 91 (A). 

Using the asymptotic form (1 - erfz)e"- z-r1/, when z> 1, we rewrite (4.4) as 

When e1 b= es, (4.5) becomes (4.2). With Or = B,, the integral in (4.5) is considered 
and we obtain asymptotic form (4.3). With Or< 8,, (4.5) gives the same asymptotic form (4.2) 
without taking account of the residue. In this case, however, the contribution of the saddle 
point is small compared with that of the pole. For, it can be shown that the function or (A) 
is increasing, while at the saddle point we have 

Hence it is clear that 0, = 0 is the maximum point of f@,(h), h), while with 8,<I3,< 
0 the function is increasing and f(O,, h)<f(e,, h,). H ence the contribution of the saddle 
point is small. 

The function f (e,, h (e,)) < 0 for all O,#O,f(O, h(0)) = O,h(O)= 1. In the intermediate 
zone, therefore, the asymptotic form of the pressure p 0 is everywhere exponentially small, 
except forthe zone around h = 1. This zone corresponds to 01)e5, i.e., to asymptotic form 
(4.21, whence it is clear that the zone of values of p* which are not exponentially small is 
given by the condition f&'(h),h)- ~'/a. In this zone we have the expansion e,(h) = h - 1 -t . . . . 
f = -(A2 - i)/2 + . . . . Finally, in the zone about h = 1 we obtain the asymptotic form of 
the pressure (2.2) as 

-‘I. ,;‘I. 

p*=E exp 
i 

- [(I - 1) El’4 - t,]* 
f/2& zat*sZ’~ * I 

Hence it can be seen that the union of pressures (3.9) and (2.2) occurs when 6 = s'/a, 

N = l/f%a. It can be shown that the union of velocities (3.9) and (2.2) gives the same 
result. 

The union of (3.9) and (3.6) gives the condition pe=_u, for z, = t. Hence FI ~0. The 
union of velocity (3.6) andthe,velocity around the piston m = G/s' 

G 0). 
gives the relation P,(t) = 

To find g(t) in (3.3), we unite the pressure (3.3) and the pressure (3.6). The inter- 
mediate coordinates are t N 1, z = x,e-‘Jr.- e-‘/a. From (3.4) (for x =0) we obtain in the 
principal approximation: n - e"/b,G - e. The asymptotic form of the pressure (3.3) is 

p* = e-"l[g (t) - al, u (1, G) N G N 8. 

The asymptotic form of the pressure (3.6) is p* = e”.C’(t)/z,. Hence it follows that 
g (t) = 0. To perform the union when x+ 0, we have to study the properties of the solution 
of Eq.(3.1). 

We write the component expansions, suitable everywhere for tN 1: 

C’ (- ZZE”, + t ) 
P= 2 

e-‘l.t-=l. -__-_+ - 
Jziii exp 

- (z - i + :e-‘l’)* e’l, 

2ta 

The pressure u = o (1 + ep,~). 

5. Determination of the dynamic characteristics of the flow at a piston. 
The solution obtained enables us to find simple time dependences of the pressure and stress 
at the piston when t N d;. Noting that the internal energy in our medium depends weakly on 
the entropy when s- 1, we can put Q = p in the principal approximation in the initial zone. 
With z -1 the integrals in (2.2) can be evaluated by means of residues. For the pressure 
(I, and the radial and angular components of the stress tensor at the piston, we obtain 
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In Fig.2 we plot curves e'i*e (a), a%c+ (a), e%,(a) at the initial instant T = 0 (curves 
1-3 respectively). With a>2, the curves are well described by the asymptotic forms 
e%oa, = --4a, e'lva, = 2a. As a increases, the initial pressure tends to zero as 2/a, but the 
stresses increase rapidly due to the viscous components. 

It is interesting that exponential decay is obtained for the pressure at the piston as 
f increases for any a. For the stresses, exponential decay occurs only for small a. 
The dimensionless decay constant b = -a/0, , relative to av.,isshown by curve 4 of Fig.2. 
It was confirmed theoretically in /2/ that the peak approximation for an inviscid fluid in 
the case of spherical symmetry gives the pressure at the piston falling exponentially with 
time, the theoretical value of the decay constant being equal to unity. It is easily seen 
that, in the viscous medium, b(a)+1 as U-+0. 

It can be seen from Fig.2 that the angular component of the stress tensor cq at the 
initial instant is positive roughly for a> 0.5. 

Through passage to the limit as a+@ is impossible in our solution in the zone of the 
forming SW, in the short time zone t-e'/* we can pass to the limit in (2.2) as T- 1, a-+0. 
This gives 

u = pe’fa = &[I-erf((h--1)V%)] (5.1) 

I It is clear from this that the viscosity must be taken into account 
in the principal approximation when t- eY*a (with these times, solution 

u (2.2) must be used) and in the SW zones (h - 1)T/r/2cc - 1. The viscous 
profile of SW, constructed in the present paper, is important for Z,N 

-7 V(is,~,). For instance, for water with rO- 10 m/set., this corresponds 
to Z,NlO-'m. With 2,s <(p,,r,) the profile, valid for an inviscid 
medium /2/, is obtained. 

-2 
The effect of viscosity makes itself felt here 

by the jump being smeared in the form of the boundary layer function 
(5.1). 

6. Conclusions. Our solution shows that, for small Reynolds 
numbers, Re =1/a' -.$Ix, an SW profile is formed from the impact which 

Fiq.2 is different from the profile in an inviscid fluid. The profile 
immediately transforms into a Gaussian profile, whose width increases as 

the square root of the time. The amplitude of the spherical SW falls in inverse proportion 
to t"/* , as distinct from the inviscid SW, where the fall is inversely proprotional to the 
time. In the SW zone the disturbances are one order larger than in the wave zone. 

The solution in the SW zone is described by a parabolic equation, and in the wave zone, 
by a hyperbolic system. The characteristics of this system are subcharacteristics of system 
(1.1) for the problem /12/. The boundary layer appears on the front characteristic of the 
linearized inviscid flow. Notice that our solution describes, not the usual viscous boundary 
layer resulting as Re+ co, but the boundary layer arising as a result of the weak compress- 
ibility of the medium when R0<1. 

As distinct from the SW profile in an ideal fluid, the geometric similarity of the SW 
profile ina viscous medium is destroyed as a result of the extra dependence on the Reynolds 
number. 

In the neighbourhood of the contact boundary, as a result of the viscous components of 
the stress tensor at short times the continuity of the medium can be destroyed, since positive 
stresses can arise. 

At short times, the pressure on the contact boundary falls exponentially with time, as 
in an inviscid medium, i.e., the peak approximation also holds for a strongly viscous medium 
in the case of spherical sylnnetry. 
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ON LAMINAR PRESEPARATION.FLOW* 

E.V. BOGDANOVA and O.S. RYZHOV 

The boundary layer of an incompressible fluid in the domain ahead of the 
departure of the free streamline fram the surface of a smooth body or a 
break-point of its generator, is considered. The potential of the external 
irrotational velocity field is taken from the theory of jet flows. It is 
assumed with respect to the initial value of the surface friction that its 
order can vary over a wide range, while remaining finite, or taking 
extremely large values. The boundary layer in the preseparation domain 
always admits of a unified mathematical treatment, in which the initial 
surface friction plays the role of a parameter. 

1. External potential flow. For measuring both the independent and the required 
quantities we take a system of units in which the basis quantities are the radius of curvature 
of the body generator at the point of separation, the velocity of the external potential flow 
at this point, and the fluid density. Changing to dimensionless variables, we direct the s 
axis of the curvilinear orthogonal system of coordinates along the body generator, and the n 
axis along the normal to it. Let u', v'bethecomponentsofthedisturbingvelocityvector,and p' 
the excess pressure in the external potential flow domain. In accordance with the linearized 
form of the Bernoulli integral, u'= -p’, while the complex velocity is -(p' + iv'). By the 
theory of jet flows of an ideal incompressible fluid, we know that, in the neighbourhood of 
the departure point of the free streamline fran the body /l/ 

p’ + iv’ = ibr,,& + ih,,z’l~ + . . . , z=s-+-in (1.i) 
When arg 2 --f 0, the pressure p’+O, whereas 

v'= bl,,S'~~ + b&j* + . . . 0.2) 
If argz+x, then v'+O, while 

p’+-ba,,(-s)‘/*+ba,,(--)‘/a+... $3) 
In accordance with (1.21, the equation of the free streamline is 

n = + bt,,.s*J~ + 4 b&l8 + . . . 
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(1.4) 


